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Abstract— A measure for the maximum quantum informa-
tion transfer capacity (ITC) between nodes of a spin network is
defined, and shown to induce a metric on a space of equivalence
classes of nodes for homogeneous chains with XX and Heisen-
berg couplings. The geometry and curvature of spin chains with
respect of this metric are studied and compared to the physical
network geometry. For general networks hierarchical clustering
is used to elucidate the proximity of nodes with regard to the
maximum ITC. Finally, it is shown how minimal control can be
used to overcome intrinsic limitations and speed up information
transfer.

I. INTRODUCTION

Networks of interacting quantum particles — so-called
spin-networks — are important for transferring and distribut-
ing quantum information between different parts of a larger
system such as different quantum components on a chip [1].
Spin chains, linear arrangements of spins, for example,
can play the role of classical wires connecting two parts,
and branched networks allow the distribution of quantum
information to different nodes. The way quantum information
propagates through spin networks, however, is quite different
from classical information flow due to quantum inference ef-
fects. In particular, quantum state transfer between the nodes
of the network is limited by fundamental physical principles
and perfect quantum state transfer is usually possible only
in very special cases. Quantifying state transfer fidelities for
spin networks is not easy in general, but for certain types
of networks such as spin- 1

2 particles with interactions of so-
called XXZ type, for example, this problem can be reduced to
the maximum probability for a single excitation to propagate
from one node to another, which can be computed efficiently
numerically, and in some cases analytically. Thus, for the
respective spin networks, the latter is a basic measure for
the maximum Information Transfer Capacity (ITC) between
different nodes. For certain types of simple networks such as
homogeneous chains the maximum ITC is shown to induce a
metric on a set of equivalence classes. We study the topology
of simple networks with regard to this metric, showing that
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it differs substantially from the physical geometry. Networks
with trivial physical geometry such as linear chains can have
a surprisingly rich geometric structure including curvature.
Analysis of the latter shows that spin chains appear to
be Gromov-hyperbolic with regard to this maximum ITC
metric but unlike classical hyperbolic networks their Gromov
boundary appears to be a single point. For more complex
networks the maximum ITC does not induce a metric but
we can use hierarchical clustering to assess the proximity of
nodes with regard to information transfer capacity. Again,
the resulting cluster structures differ substantially from the
neighborhood relations induced by the physical geometry of
the network, showing that the latter is not very useful in
assessing the maximum ITC between nodes in a network,
unlike in the classical case. Finally, we consider how minimal
control of a single node in the network allows us to change
information flow in the network, effectively changing the
information transfer capacities (and network “topology”),
allowing us to achieve higher state transfer fidelities as well
as generally speeding up the rate of information transfer.

II. INFORMATION TRANSFER CAPACITY

The Hilbert space of spin networks with XXZ interac-
tions can be decomposed into so-called excitation subspaces
H = ⊕Nn=0Hn, where the index n indicates the number of
excitations in the network, ranging from 0 to N . If we denote
the spin basis states by |↑〉 and |↓〉, taking the latter to denote
the ground state, then the 0-excitation subspace consists of
a single state |0〉 := |↓〉 ⊗ · · · ⊗ |↓〉, while the one-excitation
subspace consists of N states |n〉 := |↓〉 ⊗ · · · ⊗ |↑〉 ⊗ · · · ⊗
|↓〉, where the excitation |↑〉 is in the nth position. Thus
transferring a quantum state |ψ〉 = cos(θ)|↓〉+ eiφ sin(θ)|↑〉
from spin m to n is equivalent to transferring an excitation
|↑〉 from spin m to n:

|ψ〉m = cos(θ)|0〉+ eiφ sin(θ)|m〉
7→ cos(θ)|0〉+ eiφ sin(θ)|n〉 = |ψ〉n,

where we used the shorthand |ψ〉n to denote a product state
|↓〉⊗ |ψ〉⊗ |↓〉, whose nth factor is |ψ〉, all others being |↓〉.

The probability that an excitation created at site |i〉 has
propagated to site |j〉 after some time t is given by

p(|i〉, |j〉, t) = |〈j|e−ıHt|i〉|2 (1)

in the system of units where ~ = 1. The maximum of this
probability p(i, j) = maxt≥0 p(|i〉, |j〉, t), or a monotonic
function thereof such as

d(i, j) = − log p(i, j) (2)



N vertices/equivalence classes geometry Distances
3 a = {1, 3}, b = {2} single edge ab = 0.81

4 a = {1, 4}, b = {2, 3} single edge ab = 0.32

5 a = {1, 5}, b = {2, 4}, c = {3} triangle 0.33 = ac = bc > ab = 0.87

6 a = {1, 6}, b = {2, 5}, c = {3, 4} triangle 0.48 = ab = cb > ac = 0.36

7 a = {1, 7}, b = {2, 6}, c = {3, 5}, d = {4} triangular pyramid ad = bc = cd� ab = bc = ac

8 a = {1, 8}, b = {2, 7}, c = {3, 6}, d = {4, 5} triangular pyramid ad = bc = cd > ab = bc = ac

9 a = {1, 9}, b = {3, 7}, c = {4, 6}, d = {2, 8}, e = {5} 4-simplex ab = ac = bc < ad = bd = cd� ae = be = ce

10 a = {1, 10}, b = {2, 9}, c = {4, 7}, d = {5, 6}, e = {3, 8} 4-simplex ab = ac = bc < ad = bd = cd < ae = be = ce

TABLE I: ITC geometry of linear Heisenberg chains.
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Fig. 1: 4-point Gromov δ (left) and scaled 4-point Gromov δ (right) versus chain length. 4-point Gromov δ saturates at large
chain length, revealing Gromov hyperbolic property. Scaled-Gromov δ remains below the upper bound of ≈ 0.06 singled
out in [4, Table 1], G = L+M + S where L, M and S are the pairs of opposite diagonals of a quadrangle corresponding
to the largest, medium and smallest length.

gives a measure for the maximum state transfer fidelity
between two nodes in a spin network without control, quan-
tifying the intrinsic capacity of a spin network for quantum
state transfer tasks. It can be shown that√

p(i, j) =
∣∣〈i|e−ıHt|j〉∣∣ =

∣∣∣∣∣∑
k

〈i|vk〉〈vk|j〉e−ıλkt

∣∣∣∣∣
≤
∑
k

|〈i|vk〉〈vk|j〉| ,

where H =
∑N
k=1 λk|vk〉〈vk| is the eigendecomposition of

the Hamiltonian operator H of the network in the first exci-
tation subspace H1. If the rescaled eigenvalues λ1

π , . . . ,
λN

π
are rationally independent [2, Proposition 1.4.1] then it can
be shown that for any ε > 0 there exists a tε > 0 such that
pmax(i, j)− p(i, j, tε) < ε, i.e., the maximum ITC is a tight
bound and attainable in the limit.

III. ITC GEOMETRY & CURVATURE OF CHAINS

Inspired by [3] we may hope that the maximum ITC
measure d(i, j) defined above can be shown to be a distance.
d(i, j) clearly satisfies d(i, i) = 0 as p(i, i) = 1, and we
also have symmetry as obviously p(i, j) = p(j, i). However,
d(i, j) can vanish for i 6= j if p(i, j) = 1, and in general we

cannot expect the triangle inequality to hold. In special cases,
however, such as for homogeneous chains with either XX or
Heisenberg coupling, numerical exploration for systems up
to 500 spins shows that the triangle inequality

Dijk = d(i, k) + d(j, k))− d(i, j) ≥ 0. (3)

seems to be universally satisfied. This renders d(i, j) a
semi-distance, which induces a proper distance on a set
of equivalence classes defined by identifying nodes with
d(i, j) = 0. Specifically, for Heisenberg or XX chains with
uniform coupling the N spins can be shown to form dN2 e
equivalence classes comprised of spins n and N + 1 − n,
which we shall denote by n for n = 1, . . . , dN/2e in a
slight abuse of notation. On this set of equivalence classes
the ITC measure d(i, j) is a metric, and it is interesting to
study the induced geometry of a spin chain with respect to
the ITC metric, and how it differs from the physical network
geometry. Table I gives the ITC geometry for Heisenberg
chains up to N = 10, showing that it is very different from
the (trivial) physical geometry. A Heisenberg chain of length
N = 7, for instance, appears as a pyramid structure with
an equilateral triangle as its base formed by the vertices
a = {1, 7}, b = {2, 6}, c = {3, 5} and d = {4} as its
apex, where the numbers refer to the index of the spin in the



20 40 60 80 100

10 

20 

30 

40 

50 

60 

70 

80 

90 

100

Spin index n ≤ N

C
ha

in
 le

ng
th

 N
 (

od
d)

 

 

Heisenberg chains
0.1

0.15

0.2

0.25

0.3

0.35

0.4

20 40 60 80 100

10 

20 

30 

40 

50 

60 

70 

80 

90 

100

Spin index n ≤ N

C
ha

in
 le

ng
th

 N
 (

ev
en

)

 

 

Heisenberg chains
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

Fig. 2: Inertia (α = 2) versus chain length plots for Heisenberg chains. For N odd (left) the central node is a strong anti-
gravity center. For N even (right) there are weaker anti-gravity centers between end spins and middle (right). The inertia is
symmetric about the central node as antipodal spins belong to the same equivalence class.
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Fig. 3: Inertia (α = 2) versus chain length plots for XX chains. For N odd (left) the central node is a strong anti-gravity
center and weaker anti-gravity centers exist for intermediate nodes. For N even (right) the anti-gravity centers are located
between end and central spins. Again, the inertia is symmetric about the central node as antipodal spins belong to the same
equivalence class.

chain. Chains up to length N = 8 can be embedded in R3

but for longer chains higher-dimensional spaces are required.
By Schoenberg’s theorem [5] the distances d(i, j) can be
realized in Rd if and only if the Gram matrix G = (Gij) is
positive semi-definite of rank d, where

Gij = 1
2

(
d(i,N)2 + d(j,N)2 − d(i, j)2

)
. (4)

(This is equivalent to the Cayley-Menger matrix criterion
of [6].) We numerically verified that the Gram matrix for
both Heisenberg and XX chains is positive semi-definite for
spins up to N = 500. Analysis of the rank of the Gram
matrix furthermore suggests that the dimension d required
to embed a chain of length N is

⌈
N−2

2

⌉
for both Heisenberg

and XX chains. Note that Schoenberg’s theorem also applies
to the geometric realisability of general spin networks and

whether our ITC measure fulfills the triangle inequality.
To better understand the geometry for very long chains we

analyze its curvature à la Gromov. From both the Gromov
and the scaled-Gromov point of view [7] spin chains of both
Heisenberg and XX coupling type appear hyperbolic. The
strict Gromov point of view is displayed in Fig. 1(a) and
the scaled-Gromov point of view is shown in Fig. 1(b). The
Gromov property might appear to conflict with the Euclidean
embeddability of the metric space made up by the clusters
with the ITC metric, as the Bonk-Schramm [8] theorem says
that Gromov negatively curved spaces are embeddable in hy-
perbolic space. However, some metric spaces are embeddable
in both Euclidean and hyperbolic spaces, the most striking
example being that of a complete graph with uniform edge
weight, and spin chains with uniform couplings appear to



fall into this category.
Classical communication networks, both wired [4], [7], [9]

and wireless [3], have been shown to be Gromov hyperbolic.
Gromov hyperbolic spaces have a unique vertex that achieves
the minimum inertia [10], the so-called gravity center

g = arg min
i
I(i) = arg min

i

∑
j

dα(i, j), α ≥ 1. (5)

Classical networks indeed show a point of minimum inertia,
which can be interpreted as a congestion point [9], [11].
Classical networks also have the property that their Gromov
boundary in the asymptotic limit is a Cantor set [12]. Quite
surprisingly, quantum networks differ from their classical
counterparts in that they have points of maximum inertia,
or anti-gravity centers, as shown in Figs. 2 and 3 for
Heisenberg and XX chains, respectively, and their Gromov
boundary is a single point. The interpretation of the anti-
gravity center is that the information flow in the network
avoids this node, making it difficult to transfer excitation to
and from it. It is interesting to note in this context that the
distance between antipodal nodes is 0, meaning that we can
achieve state transfer fidelities arbitrarily close to 1, i.e., near
perfect state transfer between the ends of the chain of any
length given sufficient time, while near perfect state transfer
is never possible between any pair of nodes with d(i, j) > 0,
no matter how long we wait.

IV. ITC “TOPOLOGY” OF GENERAL NETWORKS

The maximum transfer probability is also a useful measure
for the maximum fidelity of quantum state transfer in general
spin networks. Although it is in general no longer a metric,
it can still be used as a similarity measure to define a hier-
archical clustering. We use the pairwise clustering algorithm
introduced in [13]. Pairs of nodes are grouped hierarchically
into clusters in order of their similarity, and only those
clusters whose elements are closer to each other than any
element outside the cluster are preserved. If we define a
relation

|a〉 =ε |b〉 :⇔ d(|a〉, |b〉) < ε (6)

for nodes |a〉, |b〉, then these clusters are the equivalence
classes of =ε for a certain ε. The cluster hierarchy reveals
the closeness of the nodes in terms of information transfer.

For example, consider a network of 10 spins distributed
in a square forming a general spin network as shown in
Fig. 4. The positions of the spins are indicated by the
blue dots. Taking the coupling strength J(i, j) between
spins i and j to be inversely proportional to the cube of
the physical distance between the nodes, we compute the
Hamiltonian of the network, assuming XX-coupling. We
then diagonalize this Hamiltonian and compute the maximum
transfer probabilities p(i, j) and the associated d(i, j), which
are used as input for our clustering algorithm. The resulting
hierarchical clustering structure is shown in Fig. 4. Different
colours indicate clusters for different similarity levels; i.e.
for clusters marked in the same colour there exists an ε
for which these are the equivalence classes of =ε. Again,

Fig. 4: Clustering induced by maximum transfer probability
measure for a general spin network shows that clustering dif-
fers from what would be expected if we clustered according
to physical distance.

the example shows that the physical distance of the spins
is not a good measure of their proximity in an quantum
information transfer fidelity sense. For instance, spin 9 is
physically closer to 3 than any of the other nodes, yet the
clustering indices that 9 and 3 are several levels removed
with regard to the maximum ITC.

V. CONTROL OF INFORMATION TRANSFER

To overcome intrinsic limitations on quantum state transfer
or speed up transfer, one can either try to engineer spin
chains or networks with non-uniform couplings or introduce
dynamic control to change the network topology. The idea of
engineered couplings was originally proposed to achieve per-
fect state transfer between the end spin in spin chain quantum
wires [15]. The analysis above shows that engineering the
couplings is not strictly necessary. As the distance between
the end spins with regard to the ITC metric defined above is
zero for uniform XX and Heisenberg chains, we can achieve
arbitrary high fidelities for the state transfer between the end
spins if we wait long enough. Engineering the couplings,
however, can speed up certain state transfer tasks such as
state transfer between the end spins at the expense of others.

A more flexible alternative to fixed engineered couplings
is to apply control. For instance, suppose we would like to
transfer an excitation from node 1 to 4 for an XX chain
of length N = 7. Node 4 being the anti-gravity center,
the maximum transfer probability without control is low
regardless how long we are prepared to wait. If we are able
to change the Hamiltonian of the network by applying some
control perturbation so that H = H0+u(t)H1 we can change
the situation even if the control is restricted to u(t) = 0, 1,
and H1 is a local perturbation, e.g., of a single spin induced
by a magnetic field, e.g., H1 = σ

(1)
z . Switching the control



Fig. 5: Population of |4〉 for a uniform chain XX chain of
length N = 7 under free and controlled evolution. Under
free evolution (dashed) the population cannot exceed 0.4268
(dash-dot line) but control can overcome this restriction
resulting in near perfect excitation transfer.

on/off at times tn induces the evolution

Uu(tn, 0) = Un−1 mod 2(tn, tn−1) · · ·U1(t2, t1)U0(t1, t0)
(7)

where U0(tk, tk−1) = e−ı(tk−tk−1)H0 and U1(tk, tk−1) =
e−ı(tk−tk−1)(H0+H1). By optimizing the control sequence,
i.e., in this restricted case the switching times {tk}, we
can change the dynamics to achieve near perfect transfer
of an excitation or quantum state to a desired target node. In
[16] it was shown that applying a simple bang-bang control
sequence to a single spin can significantly speed up quantum
state transfer between the ends of a chain, but control
also allows us to overcome fundamental limits imposed the
maximum ITC, enabling us to achieve near perfect excitation
transfer to the anti-gravity center in very short time, as shown
in Fig. 5, for example. We can think of the control sequence
as implementing an effective Hamiltonian Heff defined by
e−iHeff tn = Uu(tn, 0) at time tn. This effective Hamiltonian
differs from the system Hamiltonian H0, as do the transition
probabilities. For comparison, we diagonalize the effective
Hamiltonian, compute the associated maximum transition
probabilities peff(i, j), and use hierarchical clustering to
elucidate the proximity relations between spins under the
original and effective Hamiltonian. Fig. 6 shows that the
results for a particular control example.

VI. CONCLUSIONS

Following the recent trend of geometrization of classi-
cal communication networks, we have here developed the
geometry of spin networks using an Information Transfer
Capacity metric. Classical and quantum networks bear the
similarity that they are both Gromov hyperbolic, with the
difference that classical networks have a Cantor Gromov
boundary while spin chains have their Gromov boundary
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Fig. 6: Clustering induced by maximum transfer probability
for a uniform chain XX chain of length N = 7 without
control (a) and clustering induced by controlled transition
probability (b) for a bang-bang control sequence designed to
achieve perfect state transfer from spin 1 to 4.

reduced to a point. This probably accounts for yet another
discrepancy: classical networks have a gravity center (a
congestion point) while quantum networks have an anti-
gravity center, a spin difficult to communicate with. The
broader implication of this geometrization is that it specifies
where control is necessary to overcome such limitations of
the physics.

APPENDIX

A. Proof of attainability

Theorem 1: If the numbers λ1

π , . . . ,
λN

π are rationally in-
dependent [2, Proposition 1.4.1], then ∀ε > 0, ∃ t > 0 large
enough such that p(i, j)− p(i, j, t) < ε.

Proof: Set the system of units such that ~ = 1. In order
to reach the maximum probability exactly, one must find a t
such that

−λkt = (2m+ 1)π if Sgn(vikvjk) = −1

−λkt = (2m)π if Sgn(vikvjk) = +1

where vik = 〈i|vk〉 is the projection of the eigenstate vk
onto the basis state |i〉, etc, and v∗ik = vik as the eigenstates
are real for real-symmetric Hamiltonians. In other words, the
state of the N -dimensional dynamical system

˙̃x(t) = −diag {λ1, ..., λN} , x̃(0) = 0

must hit a point whose coordinates are integer multiples of
π, with the correct parity. As the pariety is not affected by
the modulo 2π operation the problem reduces to whether the
state of the system

ẋ(t) = −diag {λ1, ..., λN} mod 2π, x(0) = 0 (8)

hits a point x∗ with coordinates 0 or π, depending on the
signs of the various vikvjk. This dynamical system is the
linear flow on the N -torus, TN and by [2, Proposition 1.5.1]
it is minimal [2, Definition 1.3.2], that is, the orbit of every
point is dense. (Observe that minimality is stronger than
topological transitivity [2, Definition 1.3.1]!) Hence we can
get arbitrarily close to the point with desired coordinates
provided we allow t to be large enough.



To get a quantitative estimate of how close the state x(t)
has to be to the target point x∗ with coordinates 0, π so that
p(i, j)− p(i, j, t) ≤ ε note that√

p(i, j) =

∣∣∣∣∣∑
k

(±1)vikvjk

∣∣∣∣∣
=

∣∣∣∣∣∑
k

vikvjke
−ıλkt + vikvjk

(
±1− e−ıλkt

)∣∣∣∣∣
≤
√
p(i, j) +

∑
k

∣∣vijvjk (±1− e−ıλkt
)∣∣

≤
√
p(i, j) +

∑
k

∣∣±1− e−ıλkt
∣∣ .

Thus we have
√
p(i, j) −

√
p(i, j, t) ≤

∑
k

∣∣±1− e−ıλkt
∣∣.

From physical considerations we know that 0 ≤ p(i, j, t) ≤
1.

pmax − p = (
√
pmax −

√
p) (
√
pmax +

√
p)

thus shows that to secure pmax − p ≤ ε, it suffices to make∣∣±1− e−ıλkt
∣∣ ≤ ε

2N . If we set xk(t) = −λkt and denote
the dynamical target state as x∗k := 0 or π, it suffices that the
target state and the actual state are within the specification
|x∗k − xk(t)| ≤ sin−1

(
ε

2N

)
. Since the topology induced by

hypercubes is equivalent to the usual topology induced by
balls, the latter specification can be achieved by the density
of the orbit of 0.

B. Estimate of time to attain maximum probability

The preceding material only tells us that one can reach
arbitrarily closely the maximum probability, but it does not
tell us how much time it takes. A conservative estimate can
be derived. It is conservative in the sense that it assumes
that the dynamical evolution in x has been discretized as the
translation on the torus [2, Sec. 1.4],

x(n+1) = x(n)−diag{λ1, ..., λN} mod 2π, x(0) = 0.

The key result is that, under the condition that λ1

π , ...,
λN

π , 1
are rationally independent, the translation on the torus is also
minimal [2, Prop. 1.4.1]. In this case, the problem consists
in finding n ∈ N such that

−λkn = (2m+ 1)π if Sgn(vikvjk) = −1

−λkn = (2m)π if Sgn(vikvij) = +1

is satisfied with arbitrary accuracy, which can be derived
from:

Theorem 2 (Nowak [14]): For any λk

π ∈ R \ Z, k =
1, ..., N , there exist infinitely many ((p1, ..., pN ), q) ∈ ZN ×
N such that

N∑
k=1

∣∣∣∣−λkπ − pk
q

∣∣∣∣ ≤ c
−1/N
N

q1+1/N
(9)

where the supremum, c̄N , of all cN ’s satisfying the above
is known as c̄1 =

√
5, c̄2 =

√
23/2, and for larger N

estimated as c̄3 ≥ 1.7739, and, for N ≥ 4, c̄N ≥ (N +
1)(N+1)/2N−N/2(π/2)(N+1)/2/Γ((N + 5)/2).

By the minimality of the discrete flow, this result is already
known, except for the error bound. Therefore, the set of
((p1, ..., pN ), q) ∈ ZN ×N of the above theorem and the set
of those that satisfy the parity condition have a nonempty
intersection. Take a ((p1, ..., pN ), q) in this intersection; thus
the pk are consistent with the parity condition. Hence

N∑
k=1

∣∣∣∣−λknπ − pk
q
n

∣∣∣∣ < c
−1/N
N

q1+1/N
n

Taking n = q yields an `1 error bound of c−1/N
N /q1/N

on the (x/π)-dynamics and furthermore an error bound of
πc

−1/N
N

q1/N
=: ε on the x-dynamics. Thus the time it takes to

be within an `1-ball of “radius” ε around one of the desired
points is estimated as n = q ≈ (πNc−1

N )/εN .
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