
 
 
 

 
 

 

  

Abstract—Motivated by the concept of the smart power grid, 
reliability of a power network is investigated from a topological 
viewpoint. Inspired from Riemannian geometry of manifolds, it is 
claimed that extreme load at specific parts of a large power grid 
can occur as a consequence of the local negative curvature in its 
hidden metric space. This paper contributes to four areas: (1) It 
draws a new course in the topological study of a power grid, 
which is, unlike most previous studies, in accordance with the 
electrical characteristic, not the topographical structure, of the 
power grid. (2) It extends the Riemannian geometry metaphor 
developed for data communication networks to the power grid, an 
area it has never pervaded. (3) It develops a unifying approach to 
deal with power and data networks, precisely at a juncture where 
the smart grid is bringing the two networks together. (4) It 
provides an analytical measure for the criticality of lines and 
stations in a bulk transmission system, which can find a place in 
reliability assessment and centralized flow control in the future 
smart grid. 

I. INTRODUCTION 
mart grid is a terminology with a disparate set of goals, 
which encompasses the entire electric power system, from 

the initial sources to the final consumers of energy. A broadly 
expanded transmission system, with large quantity of 
stochastic renewable power stations, is the conspicuity of the 
future smart grid. It means that the emerging transmission 
system should be resilient to larger disturbances and more 
distributed malfunctions, which means extreme reliability 
persistently remains the most important requirement for the 
transmission system. In a methodical view, the reliability of a 
complex system, like power grid, is defined as a function 
inversely proportional to the criticality of its subsystems, 
where the criticality of subsystems may be changed by 
modifying certain attributes. Then, the crucial problem 
becomes finding an appropriate measure for the criticality of 
lines and stations in a bulk transmission system.  

In addition to the classical definition for the criticality of a 
power component as a function of its load and capacity, this 
paper claims that a deeper concept is the grid topology, say 
grid curvature, which highly affects the criticality of lines and 
stations. Under some conditions, the graph of a communication 
network, or that of the power grid for that matter, can be 
approximated by a Riemannian manifold. Then, the graph 
curvature can be defined as the curvature of its embedding 
manifold, and it is a fundamental Riemannian geometry 
paradigm that the geodesic flow is regulated by the curvature.  

As a bridge between manifolds and graphs, the Gromov 
Thin Triangle Condition allows us to determine whether a 
graph is negatively curved in the very large scale. It has its 
inception in a property of a triangle drawn on a negatively 
curved surface to have the sum of its angles less than π , 
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giving it a thin appearance. Moreover, the new concept of 
scaled Gromov property [1] provides us with an extension to 
some medium scale, and by the same token to the concept of 
nonnegatively curved graphs as well. 

The aim of this paper is to extend the congestion analysis 
developed for negatively curved communication networks to a 
similar phenomenon in the power grid. We construct an 
innovative resistive network and infer the geometry of power 
flow in the transmission system from the topological structure 
of this resistive network. A crucial point here is that we 
investigate the topology of the power grid based on the 
electrical characteristic of power flows. The existing literature 
is mostly based on the topographical structure of the power 
grid, which, as correctly observed in [2], is not able to predict 
the electrical behavior of the network.  

Furthermore, some recent attempts have been initiated to 
make a connection between power grid topology and cascade 
breakdowns leading to major blackouts, using some classical 
network concepts such as clustering and Small World [3], and 
degree distribution [4]. We claim that the Riemannian 
geometry approach to power grid topology is able to identify, 
in an analytical way, some architecture prone to create cascade 
blackouts from local faults. The domino effect in a negatively 
curved power grid can be analyzed in a Riemannian setup as 
follows: If a fault occurs in a line, this line is removed from the 
graph related to the power grid, with the consequence that the 
resulting graph is even more negatively curved, and so 
exacerbating the congestion problem with inevitable further 
faults. Accordingly, we offer a curvature-based analytical 
method to measure the criticality of lines and stations, which 
can be utilized in reliability assessment and centralized flow 
control in the future smart grid [5].  

Due to space limitations, all the proofs have been omitted, 
but they are available through authors or in [6]. 

II. RIEMANNIAN MODEL OF TRAFFIC CONGESTION 

A. Graph Theory 
All graphs in this paper are assumed to be finite, undirected, 

connected, and simple, i.e., with no self-loops or multiple 
links. Assume graph G  to be defined with a node (or vertex) 
set V , and a link (or edge) set E . Let us endow every link 

i jx x ∈E , between two incident nodes ix  and jx , with a 
positive weight value ijw , which represents the cost of 
traversal via that link. A path ( ),k lp x x  between two arbitrary 
nodes kx  and lx  is a sequence of nodes, including kx  and lx , 
with a link between any two successive ones and with no 
repeated node in the sequence. The length of a path is defined 
as the sum of the weights of the links traversed by that path. A 
path between kx  and lx  is a geodesic [ ]k lx x , if its length is 
minimum compared to all other possible paths joining kx  to 

lx . Then, geodesic distance ( ),k ld x x  is defined as the length 
of the geodesic path [ ]k lx x , i.e., ( )( )= [ ],k l k ld x x x x . The 
distance d  satisfies the triangle inequality in G , that is, 
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( ) ( ) ( ), , ,k l k m m ld x x d x x d x x≤ + , and so ( ), dG  becomes a 
metric space in G . 

B.  Curvature vs. Congestion 
Traffic on a graph is driven by a simple traffic measure, 

which is the rate of commodities to be transmitted from a 
source s  to a target t . Assume that the traffic routs on the 
graph in a least cost fashion, i.e., commodities are transferred 
from s  to t  along the geodesic [ ]st . Then, the main 
connections between congestion and curvature in a network 
can be formulated by the following definitions and theorems. 

Definition 1 (Moment of Inertia and Graph Centroid): The 
moment of inertia of a connected weighted graph G  with 
respect to a node x  is defined a s ( ) ( ),

i ixx d x xαφ = ∑ , for a 
constant 1α > . Then, the centroid of G  is defined as a node, 
for which the graph inertia becomes minimum. 

Theorem 1 (Negative Curvature [7]): Consider a large, but 
finite, negatively curved graph, subject to uniformly 
distributed demand for commodities. Then, there are some 
specific nodes with very high traffic, which are the ones of 
least moment of inertia. If the graph is non-negatively curved, 
then both the traffic and inertia are more evenly distributed 
than in the case of a negatively curved graph. Furthermore, if 
the graph is positively curved with enough symmetry, both the 
traffic and inertia are uniformly distributed. 

Graphs with absolute negative or positive curvature are, of 
course, the extreme situations. The real life networks are 
somewhere between these two extremes, with different local 
curvatures from negative to positive. In this case, a more 
detailed curvature analysis is required to determine the 
congestion points [8]. 

C. Riemannian Geometry of Traffic 
The aim is to identify a manifold nM  and its Riemannian 

metric g , such that the dynamic nodes can be thought of as 
operating on the manifold. Precisely, the question is whether 
there exists an isometric map as ( ) ( ), ,nd g→G M . Ignoring 
all the mathematical complexity, we look at this problem very 
intuitively here. Let network G  be a large ball 0( )RB  in some 
hyperbolic space nH , represented as the truncated Poincaré 
disk in Fig. 1. The routing between the source s  and the target 
t  is assumed to be in an optimal fashion for the hyperbolic 
metric. In this model, the centroid is the origin of the ball 

0( )RB . To quantify the maximum congestion occurring at the 
centroid, consider the traffic load in a small ball 0( )rB , 
r R<< , as ( ) ( )0 0

0 0   
( ) ( )

( ) [ , ] ( )
R R

t r rB B
B s t B ds dt

×
Λ = ∩∫ , 

where the integral is the total length of all traffic paths in the 
small ball, and as such it is a measure of the number of 
commodities in 0( )rB . It is argued that, no matter how 
theoretical our model of the traffic load ( )0( )t rBΛ  is, it is 
remarkably accurate at confirming that the load at the center 
scales as 2N  where N  is the number of nodes in a real 
network [7]. To reconcile the differential geometric and 
experimental approaches, it remains to show that, in an 
appropriately discretized version of ( )0( )t rBΛ , for 

0 0( ) ( ) n
r RB B⊂ ⊂ H , the latter scales as 2N . In [7], the 

asymptotic formula in nH  is found as 

( ) ( )
( )2

0
0 constant

0

( )
( ) : ( )

vol ( )
t r

t r
R

B
B O

B
λ

Λ
= = , 

where ‘constant’ means ‘independent of R.’ Thus the traffic 
load ( )0( )t rBΛ  in a small ball of measure ( )0vol ( )rB , near 
the centroid, scales as the square of the volume of the network 

( )20vol ( )RB , which is modeled as the truncated hyperbolic 
manifold 0( ) n

RB ⊂ H . In a tessellation of the Poincaré disk by 
polygons of equal areas, a node can be associated with each 
polygon, and ( )0area ( )RB  becomes the total number of nodes 
N . Similar arguments can be developed in n  dimensions. 
Therefore, our model correctly predicts that the maximum 
traffic load scales as 2N . For a 2-dimensional Euclidean 
space, it is proved in [7] that 

( ) ( )
( )2

0 constant0 ( )
0

( )
( ) :

area ( )
t r

t r
R

B
B O

RB
λ

Λ
= = . 

Therefore, up to some constant ( = ), the traffic load at the 
center scales as  

( ) ( )
2

1 5 1 50
0 . .area ( )

area ( )R
R

B
B N

R
= = . 

More generally, in a n-dimensional Euclidean space, we have 

( ) ( )
( )2 1

0 constant0 ( )
0

( )
( ) :

vol ( )
t r

t r n
R

B
B O

RB
λ

−

Λ
= = . 

Hence, the traffic load at the center scales as 
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With no doubt, as the dimension gets higher and higher, the 
Euclidean congestion decreases, and the gap between traffic 
loads in hyperbolic and Euclidean spaces increases. 

Remark: While it is relatively easy to check the Gromov 
property of network, it is not easy at all to associate a 
dimension with a complex network. The remarkable feature is 
that the asymptotic traffic analysis transcends the dimension, 
at least in negatively curved spaces. 

III. RESISTIVE GRAPH VS. TRANSMISSION GRID 
The first issue before applying the theorems and definitions of 
the previous section to the power grid is that the traffic should 
be expressed by such a simple variable as the rate of 
commodities passing through a node or a link. However, 
electrical power requires two variables to be identified, a 
generalized coordinate (charge) and a generalized force 
(voltage). Another challenge is that a commodity like a 
message has a specific header and is transferred from source to 
destination through an optimal path. However, electrical 
power, instead, flows along all transmission lines and stations 
from generating source to consuming loads in accordance with 
the power flow equations.  

 
 
 
 
 
 
 

 

Fig. 1.  “Traffic” on Euclidean (left) vs. Poincaré (right) space. The 
optimal paths are uniformly distributed in a Euclidean space, but 
maximally distributed at the center in a Poincaré space.  
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To overcome these problems and employ the powerful 
methods of differential geometry in the power flow problems, 
we introduce an auxiliary resistive grid in such a way that the 
geometry of power flow in the power grid can be concluded 
from the geometry of traffic in this auxiliary graph. Then, if 
the auxiliary graph is negatively curved, we expect to find 
some lines vulnerable to overloading, or some critical stations 
in the power grid. We intentionally separate stations from 
lines, since contrary to the routers in a data communication 
network, overloading hardly happens for the stations in a 
practical power grid; though, critical stations are still security 
weaknesses of the power grid. 

A. Power Flow Equations 
In the bus analysis of transmission system, Fig. 2, let us 

denote the voltages at buses k  and m  respectively with kE  
and mE  relative to a ground reference voltage, and the line 
admittance between them with kmy . By Kirchhoff’s law, the 
bus current kI , defined as the net current drawn from bus k , 
is computed from ( )k km k mmI y E E= −∑ , where 0kky = . For 
a given voltage profile and network topology, the complex 
power transmitted from bus k  to m  is given by 

*
km km km k kmS P jQ E I= + = , where * * * *( )km km k mI y E E= −  is the 

complex conjugate of line current. With some mathematical 
manipulations, active and reactive power flows in the lines are 
obtained as 

2 ( ) ( )cos sinkm km k km k m k m km k m k mP G V G V V B V Vθ θ θ θ= − − + −   (1) 
2 cos( ) sin( )km km k km k m k m km k m k mQ B V B V V G V Vθ θ θ θ= − − − −    (2) 

where kmP  and kmQ  are respectively active and reactive power 
flow from bus k to m, kV  and kθ  voltage magnitude and phase 
angle at bus k with ( )expk k kE V jθ= , and kmG  and kmB−  line 
conductance and susceptance with km km kmG jB y− = . Writing 
the equations for all lines connected to bus k , the net complex 
power injection into the bus is computed from 

*
k km km k km mS P j Q E I= + =∑ ∑ . 

B. Auxiliary Resistive Grid 
A resistive graph R  is defined by a set of resistors as its 

links, where the weight of each link is equal to its resistance, 
i.e., 0>= ijij Rw , for ji ≠ . As a graph, the geodesic distance 
or shortest path distance, between two arbitrary nodes kx  and 

lx  in R , is defined as the path with the least apparent 
resistance joining them, and denoted by ( ),k lR x x . By the 
auxiliary resistive grid, we mean emulating the power grid 
with a resistive graph, such that the power flow in the power 
grid can be analogized with the electrical current in the 
resistive graph.  

Based on physical properties of the power grid, operating in 
a normal steady-state mode, there is a weak coupling between 
( , )P θ  and ( , )Q V  components. With this assumption, a pair of 
decoupled equations can approximate the fluctuation of line 
active and reactive power flows around their steady-state 
values as 

( ) ( )+km km
km km k k m m

k m

P P
P P θ θ θ θ

θ θ
⎛ ⎞ ⎛ ⎞∂ ∂

− = ⋅ − ⋅ −⎜ ⎟ ⎜ ⎟
∂ ∂⎝ ⎠ ⎝ ⎠

        (3) 

( ) ( )km km
km km k k m m

k m

Q Q
Q Q V V V V

V V
⎛ ⎞ ⎛ ⎞∂ ∂

− = ⋅ − + ⋅ −⎜ ⎟ ⎜ ⎟
∂ ∂⎝ ⎠ ⎝ ⎠

    (4) 

where a bar on the top indicates steady-state value.  

Another inherent characteristic of a practical power grid is 
that for most transmission lines, the line resistance is much 
smaller than the line reactance, kmkm BG << . Assuming 

0kmG ≅ , so-called lossless transmission system, (3) and (4) 
result in  ( )( )coskm km k m km k mP B V V θ θ θ= −                      (5) 

( ) ( )2 cos coskm km k km m km k km k km mQ B V B V V B V Vθ θ= − −     (6) 

where a tilde on the top indicates fluctuation around steady-
state value, and km k mθ θ θ= − .  

To construct the auxiliary resistive grid, we also need to 
approximate cosk m kmV V θ≅ . Indeed, this approximation is 
quite justifiable for the power grid operating in a steady-state 
mode, in which two incident buses are almost the same in 
voltage magnitude and phase angle, i.e. k mV V≅  and 

1cos kmθ ≅ . Then, (6) can be restated as 

( )cos k m
km km k m km

k m

V V
Q B V V

V V
θ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
.                  (7) 

Let km km kmS P jQ= +  represent the fluctuation of complex 
power transmitted from bus k  to m . It follows from (5) and 
(7) that  

( ) ( ) ( )coskm km k m km k k k m m mS B V V jV V jV Vθ θ θ⎡ ⎤= + − +⎣ ⎦   (8) 
Aggregating power fluctuations for all lines connected to bus 
k , the fluctuation of net complex power injection into bus k  
is obtained by k km kmm mS P j Q= +∑ ∑ . Let us associate kmS  
with a complex current, and ( )k k kjV Vθ +  with a complex 
voltage. Then, (8) can be interpreted as the voltage-current 
characteristic of a resistive graph with variable link 
conductance of coskm k m kmB V V θ , and nodal complex current 
sources of kS .  

Definition 2 (Auxiliary Resistive Grid): Consider a power 
grid in a steady-state power flow condition. The auxiliary 
resistive grid associated with this specific steady-state mode is 
a resistive graph isomorphic to the power grid, in which the 
resistance of each link is equal to ( ) 1

coskm km k m kmR B V V θ
−

= .  
It is extremely important to note that all variables of the 

system, when evaluated in a specific steady-state mode, are 
assumed constant in short-time analysis, even though their 
values can change in medium- and long-time operation. Also 
notice that the root of fluctuations in the system is the variation 
of power supply/demand, happening in buses. Then, deviation 
of voltage magnitude kV  and phase angle kθ  will be the 
consequence of those variations. Accordingly, the auxiliary 
resistive grid will only have current (complex power) sources 
in its nodes, where the value of each source is zero if there is 
no fluctuation in the power supply/demand of that node.  

Theorem 2 (Resistive Graph vs. Transmission Grid): 
Consider the auxiliary resistive grid associated with a specific 
steady-state mode of the power grid. Let a set of complex 
current sources kψ  injecting into the nodes, resulting in a set 
of node complex voltages kU  and a set of link complex 
currents kmJ . Then, the fluctuation of line complex power and 
bus complex voltage in the power grid satisfy 

km km kmP jQ J+ =  and k k k kjV V Uθ + = , iff the fluctuation of 
net complex power injection into the buses satisfy k kS ψ= . 

 
 
 

 

 
Fig. 2.  Power grid transmission line model. 

kmkm jQP +
mSeries Admittancek

kkV δ   km km kmy G jB= − mmV δ   

kmkm jQP +
mSeries Admittancek

kkV δ   km km kmy G jB= − mmV δ   
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C. Effective Resistance vs. Geodesic Distance  
In a resistive graph, the current between two nodes kx  and 

lx  will not necessarily follow the path of least resistance 
( ),k lR x x . The relevant concept, instead, is that of effective 

resistance representing electrical distance. The effective 
resistance between two nodes is a measure of how electrically 
close they are, i.e., ( ),eff k lR x x  is small when there are many 
paths with low resistance between nodes kx  and lx . The 
practical importance of the effective resistance, at least from 
the viewpoint of this study, is that the asymptotic behavior of 
the effective resistance ( ),eff k lR x x  versus the shortest path 
resistance ( ),k lR x x  can provide information about the 
curvature of resistive graph. 

Remark: The effective resistance satisfies the triangle 
inequality ( ) ( ) ( ), , ,eff k l eff k m eff m lR x x R x x R x x≤ +  in R , i.e., 

effR  is a distance, which is different from the geodesic 
distance R  unless R  is a tree. Hence, ( ), effRR  becomes a 
new metric space different from ( ), RR .  

Compute Effective Resistance: Given a resistive graph 
( , )R V E , the weighted adjacency matrix A  is a symmetric 

square matrix of size V , defined by ijjiij R/1== AA  if 
i jx x ∈E , and zero otherwise. Let D  be the diagonal matrix 

with 1 /
i j ijx x R∈= ∑ EiiD . Then, the weighted Laplacian matrix 

is defined by ADL -= . Let 0L  be the sub-matrix obtained by 
deleting the row and column of L  related to the reference 
node. It is easily seen that 0L  is invertible and the effective 
resistance between two arbitrary nodes is given by  

( ) ( ) ( )1 1 1
0 0 0( ) 2,eff k l kk ll kl

R x x − − −= + −L L L , where neither kx  
nor lx  is the reference node, and by ( )1

0( ),eff k l kk
R x x −= L , 

where lx  is the reference node.  

IV. GEOMETRY OF POWER TRANSMISSION 
The aim of this section is to apply the abstract concepts 
outlined in Section II to the problem of power congestion in 
the power grid, using the resistive graph tools developed in 
Section III. The curvature concepts are being developed in 
order to anticipate which line, if any, is likely to overload. The 
intuitive concept is that the power grid will have congested 
spots if it is negatively curved. The Gromov hyperbolic 
property enters the scenery in the sense that, should the 
auxiliary grid be Gromov hyperbolic, the power grid is 
negatively curved and its electrical behavior is nearly isometric 
to a core-centric network.  

A. Hyperbolic Resistive Grid 
A possible node pattern is that of a Euclidean lattice, in 

which the nodes of the graph are obtained by the action of a 
discrete group of translations from a single node; and every 
two nodes, linked by a generator of the translation group, are 
connected by a link, i.e., a resistor in the resistive graph setting 
[9]. Familiar examples of Euclidean lattices include the square 
graph, the cubic graph, etc. One of the topological features of 
Euclidean resistive graphs, as stated by the following theorem, 
is that, remarkably, the asymptotic properties of the effective 
resistance differ from those of the shortest path resistance, and 
depend on the dimension of the lattice as well. 

Theorem 3 (Euclidean Resistive Grid [10]): On a 1-
dimensional Euclidean resistive string, ( ),eff k lR x x =  

( )( ),k lO R x x ; on a 2-dimensional Euclidean resistive lattice, 
( )( ) ( ), log ,eff k l k lR x x O R x x= ; whereas on a 3-dimensional 

Euclidean resistive lattice, ( )( ) 1,eff k lR x x O= . 
Now, we turn our attention to the opposite situation, where 

the effective resistance and the shortest path resistance have 
the same asymptotic behavior, independent of the dimension.  

Given a resistive graph R , a geodesic triangle k l mx x xΔ  is 
defined as a triangle made up of the shortest path resistances 

( ),k lR x x , ( ),l mR x x , ( ),m kR x x .  
Definition 3 (Gromov Hyperbolic Graph): A resistive graph 
( , , )RR V E  is Gromov hyperbolic if there exists a finite δ , 

such that every geodesic triangle k l mx x xΔ  has an inscribed 
triangle kl lm mkx x xΔ  of a perimeter not exceeding δ , that is, 

( ) ( ) ( ), , ,kl lm lm mk mk klR x x R x x R x x δ+ + ≤ . 
Intuitively, a Gromov hyperbolic graph looks like a tree 

when viewed at a distance, where the concept of viewing at a 
distance is formalized in large-scale geometry, also referred to 
as coarse geometry [11]. The general idea of coarse geometry 
is that spaces which may locally be very different can still be 
very close on a large scale, and that many properties of them 
can be invariant under some coarse approximations, i.e., 
isometries up to some bounded distortion. As far as geometric 
techniques are concerned, we do not care about distortion, 
provided that it is uniformly bounded. In other words, in a 
resistive graph R , the exact value of the effective resistance 
between nodes is irrelevant; but the relevant fact is whether 
this resistance is vanishing, finite, or infinite, which are coarse 
geometric invariants. 

Definition 4 (Quasi-isometric Embedding): An embedding 
→f : G H  of the graph ( , )G G GdG = V ,E  into the graph 

( , )H H HdH = V ,E  is a quasi-isometry, if for every arbitrary 
nodes kx  and lx  in G , there exist constants 1λ ≥ , 0ε ≥ , 

0c ≥  such that 

( ) ( ) ( )1 ( ) ( ), , ,G k l H k l G k ld x x d x x d x xε λ ε
λ

− ≤ ≤ +f f  

and every node in H  has a distance at most c from some node 
in the image ( )f G .  

Remark: In the process of replacing a space with its quasi-
isometric image, one of the most interesting features that 
remains invariant in large-scale is negative curvature, i.e., if 
one space is negatively curved, so is the other.  

Theorem 4 (Quasi-isometric to Tree): Given a Gromov 
hyperbolic resistive graph ( , )G G effGRG = V ,E  subject to a 
quasi-pole and a Cantor Gromov boundary, there exists a tree 

( , )T T effTRT = V ,E , finite constants 1≥α  and 0≥β , and an 
embedding TG →:f , such that ,k l Gx x∀ ∈V , 

1 ( ) ( ( ) ( ))  ( ), , ,effG k l effT k l effG k lR x x R f x f x R x xβ α
α

− ≤ ≤ .   (9) 

Theorem 4 justifies the fact that a Gromov hyperbolic graph, 
subject to some technical conditions, is isometric to a tree up to 
a bounded distortion. In other words, Gromov hyperbolic 
networks are a mathematical idealization of core-centric, 
negatively curved graphs.  

Theorem 5 (Hyperbolic Resistive Grid): If the resistive 
graph ( )R = V,E  is Gromov hyperbolic with a quasi-pole and 
a Gromov boundary, then for any ,k lx x ∈V , we have 

( , )eff k lR x x =  ( )( , )k lO R x x . More precisely,  

R
1

( , )

( , )
lim / ,

( , )k l

eff k l

x x k l

R x x
R x x

α α
→∞

∈ ⎡ ⎤⎣ ⎦ , 

where α  is, as in (9) , the multiplicative distortion in the 
quasi-isometry between the graph and its embedded tree [12]. 
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B. Grid Curvature vs. Line Overload  
To be practical, let us assign to each bus in the power grid 

an operation risk factor ρ , which represents the risk of 
experiencing power fluctuation in the bus. Then the expecting 
value of power fluctuation for each bus is determined in terms 
of the value of its power supply/demand in a specific steady-
state operating mode. It means that if, for example, a bus 
operates under 1000 MVA power and risk factor 0.1, the 
transmission system must be reliable against 1000 × 0.1 = 100 
MVA power increment/decrement in this bus.  

To extend congestion analysis developed for communication 
networks to that of the power grid, we have hitherto dealt with 
two difficulties, i.e., defining traffic as a simple variable, and 
identifying the way in which this traffic is dispatched from 
source to destination. There are a couple of more challenges 
which are illustrated in Fig. 3 by comparison between 
congestion in the Internet and overload in the power grid. The 
first contrast is that in the Internet the limitation is on the 
routers with packet drops, whereas in the power grid the 
limitation is on the lines with overload trips. The second 
contrast is that in the Internet both send/receive and congestion 
occur in the nodes, whereas in the power grid supply/demand 
occurs in the nodes but overloading happens in the links. 

To proceed, we need to introduce a distance between a line 
and a bus in the power grid. Although defining a notion of 
distance between these two dissimilar objects is 
mathematically controversial, we can do it in accordance with 
electrical intuition. Assume a current source with the value of 

lI  is injected into node lx  in the auxiliary resistive grid. This 
current increases the value of voltage in node kx  by 

( ) ( )1 1
0 0km kl ml

u − −= −L L . Hence, link k mx x  receives a current 
with the value of ( ) ( )( )1 1

0 0km kl ml
i − −= − ⋅L L  ( )l kmI R , and 

0 1km li I≤ ≤  represents a measure of electrical closeness 
between line k mx x  and bus lx . Then, we define weighted 
electrical centrality (inverse inertia) for a link k mx x  by the 
sum of the weighted closeness between this link and all nodes 
in the auxiliary resistive grid, that is,   

( ) ( )( )1 1
0 0

1
1

( )
( ) ikm k m i ix ki mikm

C x x S
N R

ρ− −= − ⋅ ⋅
− ⋅ ∑ L L ,    (10) 

where 2 2
i i iS P Q= +  is the bus net apparent power, 

0 1iρ≤ ≤  is the bus operation risk factor, and N  denotes the 
number of nodes in the resistive grid.  

Definition 5 (Line Moment of Inertia): Consider a power 
grid in a steady-state power flow condition, with the auxiliary 
resistive grid, and a set of bus operation risk factors, associated 
with this operating mode. Then, the normalized moment of 
inertia of the power grid with respect to a line is defined as  

3

1
 
( )

( )
max ( )

i j

km k m
km k m

ij i jx x

C x x
x x

C x x
φ

⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

.                     (11) 

Remark: The moment of inertia of each line is defined in 
accordance with a specific stationary mode of operation. 
Therefore, it is constant only in short-time analysis, and can 
highly change in medium- and long-time operation.  

While the local curvature of power grid can hardly be 
determined, if possible at all, Theorem 5 provides a practical 
tool to check the hyperbolic property of the power grid from its 

auxiliary resistive grid. Then, the following corollary predicts 
the geometry of power transmission in a hyperbolic power grid 
according to the moment of inertia, which can be analytically 
determined for any line. 

Corollary 1 (Negatively Curved Power Grid): Consider the 
auxiliary resistive grid associated with a specific steady-state 
mode of the power grid, with a set of bus operation risk 
factors. If this resistive grid is Gromov hyperbolic, then under 
uniform distribution of power fluctuations in buses, the lines 
with the lower moments of inertia experience more 
fluctuations in their transmitting power. On the other hand, if 
the auxiliary resistive grid is not hyperbolic, then the lines 
have nearly the same moment of inertia and the fluctuation of 
power tends to be distributed among them in nearly uniform 
manner.  

C. Smart Power Scheduling/Routing  
It is important to notice that a small moment of inertia 

implies higher vulnerability to uncertain changes in the power 
transmitted by a line, not necessarily overloading. To 
determine the line vulnerability to overloading, we need to 
know another characteristic of the line, so-called line 
utilization. In the simplest form, the line utilization is defined 
as km km kmF S W= , where 2 2

km km kmS P Q= +  is the line 
apparent power, and kmW  denotes the rated capacity of the line 
in volt-amp (VA).  

Corollary 2 (Reliable Transmission): Consider the 
negatively curved power grid in Corollary 1. Then for a 
reliable transmission under uniform distribution of 
disturbances in supply/demand, higher free capacity must be 
allocated to the lines with the lowest moments of inertia.  

It is important to discriminate between the classical way of 
regarding high line utilization and the way proposed here. If a 
line is in high utilization, the red flag is already raised, even in 
a traditional dispatch. However, the claim here is that for a line 
with respect to which the power grid has low moment of 
inertia, the red flag must be raised in quite a lower utilization 
compared to that in a traditional dispatch. Such a line, even 
with lower utilization, may be at higher risk of overloading in 
the presence of disturbance in supply/demand.  

Remark: In a negatively curved power grid, if the line 
utilization remains globally low for all possible scenarios of 
supply/demand, a low moment of inertia should not be a 
concern for line overload, i.e., reliability against 
supply/demand disturbance. Nevertheless, if the grid is quasi-
isometric to a tree, the line failure could cut the service to 
many consumers, i.e., still unreliable against structural 
disturbance. 

 
 
 

 

 

 

Fig. 3.  Contrast between packet congestion in Internet and line 
overloading in power grid. 
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V. EVALUATION RESULTS 
We evaluated the theoretical results of the previous sections 
through the IEEE 300 bus case. Fig. 4 shows, for five specific 
nodes kx  as samples, the ratio of the shortest path resistance 

( ),k iR x x  to the effective resistance ( ),eff k iR x x , each of 
which calculated between that node and all other nodes in the 
auxiliary resistive grid. This quantity, as discussed in Theorem 
5, is a measure of hyperbolicity for the network. Two curves 
show a hyperbolic characteristic, in which / effR R  is saturated 
despite the increase in R , which is symptomatic of a 
negatively curved resistive grid. The other curves, instead, 
reveal more like Euclidean resistive patterns, though different 
quantitative curvatures can be associated with them.  

Fig. 5 compares the apparent power flow in different 
transmission lines together with the moment of inertia of each 
line. The operation risk factor is assumed the same for all 
buses. It clearly shows that there are some lines with low 
moment of inertia, operating under high power flow. However, 
as discussed in Corollary 2, without knowledge about the free 
capacities of different lines, we cannot give any measure 
about, or even compare their vulnerabilities, to overloading. 
Unfortunately, the rated capacities of lines are not given in the 
IEEE 300 bus case. Furthermore, assuming the same capacity 
for all lines is not practically justifiable and can be misleading. 
For example, one line under much lower operating power 
compared to another line may be more vulnerable to 
overloading, because of the combination of moment of inertia 
and free capacity of the lines.  

Although, because of the lack of information, we cannot 
analyze the network reliability in a complete way, some 
conclusions can be drawn: (1) The grid is locally negatively 
curved with respect to some lines and buses. This observation 
is confirmed in Fig. 4 by the non-uniformity of the moment of 
inertia (Corollary 1), and in Fig. 5 by the symptoms of 
hyperbolicity in the auxiliary resistive grid (Theorem 5). (2) 
Number 1 line has zero moment of inertia with 458 MVA 
transmission load. This line is the only one connecting the 
power grid to its reference bus, namely swing bus. (3) Number 
0 to 50 lines are in high centrality with respect to the 
fluctuations of power supply/demand in buses. To have a 
reliable power grid, these lines must operate quite far away 
their rated capacities. (4) Number 51 to 180 lines are in 
medium centrality, where a collection of lines with highest 
transmitting power occurs.  

VI. CONCLUSION 
This paper has targeted application of the congestion analysis 
developed for negatively curved communication networks to 
similar phenomena in power flow networks. As such, it is 
firstly a response to the Robust Network Topology Dynamics 
Statement of Need of the DoD [13], and secondly an initiative 
to state-of-the-art transmission systems for the future smart 
grids. We have investigated the geometry of the manifold 
underneath the network as a topological analysis tool to predict 
the behavior of the power grid in the presence of uncertain 
disturbances in load and generation. It is believed that this 
paper, beyond its application to the power grid, can open a 
new way to employ geometrical tools in revealing hidden 
behavior of power flow networks, in which the traffic cannot 
be quantified by only one variable.    
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Fig. 5.  Apparent power flow vs. moment of inertia for different lines in the power grid. Fig. 4.  ( )/ ( ), ,i eff iR Rx x x x  for five nodes in auxiliary resistive grid. 
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